Analysing Motion Using Ticker Timers

Ticker timers vibrate at exactly 50 ticks per second (50 Hertz or 50 Hz). They mark dots on a ticker tape which is attached to a moving object such as a trolley. Each dot on the ticker tape occurs exactly 0.02 seconds apart (which is 1/50 of a second). By measuring the distance between the dots you can easily calculate the object's speed. To simplify things we will be measuring the distance between every 5 dots, which equates to 5 x 0.02 seconds: 0.1 seconds. The dots might look something like this:

Name: _____

4				4					
			•		•	•			₹.
0 1 2 3 4 5 6 7 8 9	10 16	21	23	24	25	26	27	28	29
1. As practise	e, calculate the averag	ge speed between d	ot 1 an	d dot 6					
Step 1: find the di	stance with a ruler. D	istance =1	nillime	etres =		me	tres		
Step 2: work out t	he time. Time $= 5 \text{ tim}$	ne intervals \times 0.02 s	econd	s =		\$	second	ls	
Step 3: calculate t	he speed. Average spe	eed = distance / tim	e =						
2. Calculate t	the average speed betw	ween dot 24 and do	t 29.						
Distance =	millimetres =	metres							
Time =	time intervals \times 0.02	seconds =		second	S.				
Average Speed =	distance / time =								

Aim: To investigate the speed of an accelerating trolley.

Method:

- Attach the ticker timer to the AC power supply.
- Tape a 1m-long ticker tape to the trolley.
- Turn on the power so that the ticker timer is vibrating.
- Elevate one end of the bench and allow the trolley to accelerate down hill.
- Mark the tape from the **first clear dot** to the last clear dot every <u>five</u> **time intervals** (which represents 0.1 seconds). It should look something like this.

- Measure the length of each 5-tick interval and fill in the table.
- Cut out each 5-tick interval (exactly on the lines that you drew) and construct a "graph" by pasting them in order onto the thick line on the bottom of the next page.

Results:

Time	Length of	Length of each	Duration	Speed	Elapsed
Interval	each 5-tick	5-tick interval.	(seconds)	(m/s)	Time (s)
	interval.	(in metres)			
	(mm)				
1			0.1		0.1
2			0.1		0.2
3			0.1		0.3
4			0.1		0.4
5			0.1		0.5
6			0.1		0.6
7			0.1		0.7
8			0.1		0.8
9			0.1		0.9
10			0.1		1.0
11			0.1		1.1
12			0.1		1.2
13			0.1		1.3
14			0.1		1.4
15			0.1		1.5

Describe what happened to the speed of the trolley as it rolled down hill.				

