Analysing Motion Using Ticker Timers

Ticker timers vibrate at exactly 50 ticks per second (50 Hertz or 50 Hz). They mark dots on a ticker tape which is attached to a moving object such as a trolley. Each dot on the ticker tape occurs exactly 0.02 seconds apart (which is $1 / 50$ of a second). By measuring the distance between the dots you can easily calculate the object's speed. To simplify things we will be measuring the distance between every 5 dots, which equates to 5×0.02 seconds: 0.1 seconds.
\qquad The dots might look something like this:

1. As practise, calculate the average speed between dot 1 and dot 6 .

Step 1: find the distance with a ruler. Distance = \qquad millimetres $=$ \qquad metres
Step 2: work out the time. Time $=5$ time intervals $\times 0.02$ seconds $=$ \qquad seconds
Step 3: calculate the speed. Average speed $=$ distance $/$ time $=$ \qquad
2. Calculate the average speed between dot 24 and dot 29 .

Distance $=$ \qquad millimetres $=$ \qquad metres
Time $=$ \qquad time intervals $\times 0.02$ seconds $=$ \qquad seconds.
Average Speed $=$ distance $/$ time $=$ \qquad

Aim: To investigate the speed of an accelerating trolley.

Method:

- Attach the ticker timer to the AC power supply.
- Tape a 1 m -long ticker tape to the trolley.
- Turn on the power so that the ticker timer is vibrating.
- Elevate one end of the bench and allow the trolley to accelerate down hill.
- Mark the tape from the first clear dot to the last clear dot every five time intervals (which represents 0.1 seconds). It should look something like this.
- Measure the length of each 5-tick interval and fill in the table.
- Cut out each 5-tick interval (exactly on the lines that you drew) and construct a "graph" by pasting them in order onto the thick line on the bottom of the next page.

Results:

Time Interval	Length of each 5-tick interval. (mm)	Length of each 5-tick interval. (in metres)	Duration (seconds)	Speed $(\mathrm{m} / \mathrm{s})$	Elapsed Time (s)
1			0.1		0.1
2			0.1		0.2
3			0.1		0.3
4			0.1		0.4
5			0.1		0.5
6			0.1		0.6
7			0.1		0.7
8			0.1		0.8
9			0.1		0.9
10			0.1		1.0
11			0.1		1.1
12			0.1		1.2
13			0.1		1.3
14				1.4	
15					1.5

Describe what happened to the speed of the trolley as it rolled down hill.
\qquad
\qquad
\qquad
\qquad

