Calculating Pi (π)

Name: \qquad Form: \qquad

The Circumference of a circle, C, can be calculated according to the formula, $\mathbf{C}=\mathbf{2 \pi r}$, where $\mathbf{C}=$ circumference and $\mathbf{r}=$ radius. We can also write the formula $\mathbf{C}=\boldsymbol{\pi d}$, where $\mathrm{d}=$ diameter.
$\mathrm{Pi}(\pi)$ appears on your calculator as 3.141592654 , so it is easy to calculate a circle's circumference if you know its radius or diameter.
BUT, what if you didn't know the value of $\boldsymbol{\pi}$?
$\operatorname{Pi}(\pi)$ is the ratio of a circle's circumference to its diameter. $\boldsymbol{\pi}=\frac{\boldsymbol{C}}{\boldsymbol{d}}$

You task is to calculate π given the circumference and the diameter of 6 circles.
 Instructions:

Work in pairs and use a trundle wheel to measure the circumference and diameter of the 2 circles located on the basketball courts. Also select 4 other circular objects as supplied by your teacher.

Circular Object	Circumference (C)	Diameter (\mathbf{d})	$\boldsymbol{\pi}=\frac{\boldsymbol{C}}{\boldsymbol{d}}$
1.			
2.			
3.			
4.			
5.			
6.			

Questions?

1. How does your value of π compare to the value shown on your calculator?
2. What were some of the problems with taking your measurements?
3. Archimedes in the $3^{\text {rd }}$ century BC used geometry to calculate π, and found that $3 \frac{10}{71}<\pi<3 \frac{10}{70}$. Re-write $3 \frac{10}{71}$ and $3 \frac{10}{70}$ as decimals.
4. How accurate was Archimedes compared to your results and compared to π on the calculator?
\qquad
\qquad
\qquad
5. Does π change if the size of the circle changes?
