| ating Pi (π) | Name: | Form: |
|--------------|-------|-------|
| ating Pi (π) | Name: | Form: |



The Circumference of a circle, C, can be calculated according to the formula,  $C = 2\pi r$ , where C = circumference and r = radius. We can also write the formula  $\mathbf{C} = \pi \mathbf{d}$ , where  $\mathbf{d} = \text{diameter}$ . Pi ( $\pi$ ) appears on your calculator as 3.141592654, so it is easy to calculate a circle's circumference if you know its radius or diameter.

BUT, what if you didn't know the value of  $\pi$ ?

Pi ( $\pi$ ) is the ratio of a circle's circumference to its diameter.  $\pi = \frac{c}{d}$ 

## You task is to calculate $\pi$ given the circumference and the diameter of 6 circles. **Instructions:**

Work in pairs and use a trundle wheel to measure the circumference and diameter of the 2 circles located on the basketball courts. Also select 4 other circular objects as supplied by your teacher.

| Circular Object              | Circumference (C) | Diameter<br>(d) | $\pi = \frac{C}{d}$ |
|------------------------------|-------------------|-----------------|---------------------|
| 1.                           |                   |                 |                     |
| 2.                           |                   |                 |                     |
| 3.                           |                   |                 |                     |
| 4.                           |                   |                 |                     |
| 5.                           |                   |                 |                     |
| 6.                           |                   |                 |                     |
| Average ( <b><i>π</i></b> ): |                   |                 |                     |

Questions?

1. How does your value of  $\pi$  compare to the value shown on your calculator?

- 2. What were some of the problems with taking your measurements?
- 3. Archimedes in the 3<sup>rd</sup> century BC used geometry to calculate  $\pi$ , and found that  $3\frac{10}{71} < \pi < 3\frac{10}{70}$ . Re-write  $3\frac{10}{71}$  and  $3\frac{10}{70}$  as decimals. \_\_\_\_\_\_
- 4. How accurate was Archimedes compared to your results and compared to  $\pi$  on the calculator?
- 5. Does  $\pi$  change if the size of the circle changes?

