PULLEYS. Name:	Form:
to have been the inve he was able to haul a this prac, you will inv	s have been used for many years to help people lift heavy loads. Archimedes is said ntor of the compound-pulley system. By arranging a series of pulleys side by side, fully laden ship out of the water onto dry land completely on his own. In restigate how pulleys work. But first g up a 1kg mass with a rope. How much weight are you holding up?
	looping under the clip. You hold one end of the rope and someone else How much weight are you each holding up now? Explain. 1kg 1kg
Equipment: retort st	the use of pulleys in lifting loads. ands, metal bar, boss heads, string, 500g weight, spring balance, pulleys, metre ruler. as shown.
Method: Set up	A. Hang the pulley from the metal bar. 1. How much force is required to lift the 500g weight? 2. What advantage does this arrangement provide for lifting a heavy object?
	B. Attach the pulley as shown. 1. How much force is required to lift the 500g weight now? 2. Express your answer above as a percentage of 500g. \[\frac{force required}{500g} \times 100\% = \] 3. By how much has your pulling power increased? \[\frac{500g}{force required} = \]
4. Why has the force	
5. Lift the weight up	20cm. Measure how far you need to lift the string to achieve this?
6. As a fraction $\frac{distance \ needed \ to \ pull}{20cm} =$	${20cm} =$
7. How do your answ	ers to Question 3 and Question 6 compare?

- C. Use a double pulley to lift the 500g weight.
- 1. How much force is required to lift the 500g weight now? _____
- 2. Express your answer above as a percentage of 500g.

$$\frac{force\ required}{500g} \times 100\% =$$

3. By how much has your pulling power increased?

$$\frac{500g}{force\ required} =$$

- 4. What distance do you need to pull the string to move the weight 20cm.
- _____
- 5. As a fraction...

distance needed to pull

 $\frac{20cm}{20cm} = \frac{1}{20cm} = \frac{1}{20cm}$

6. Comment on your answers to questions 3 and 5.

- **D.** Use a triple pulley to lift the 500g weight.
- 1. How much force is required to lift the 500g weight now?
- 2. Express your answer above as a percentage of 500g.

$$\frac{force\ required}{500g} \times 100\% =$$

3. Why has the force required decreased?

4. By how much has your pulling power increased?

$$\frac{500g}{force\ required} =$$

5. To lift the weight up by 20cm, how far do you have to pull the string?

6. As a fraction...

 $\frac{distance \ needed \ to \ pull}{20cm} = \frac{}{20cm} =$

Conclusion:

What is the relationship between the force advantage you get from pulleys and the distance that you have to pull the string?

