(b) a load, three examples of w	hich are	
(c) (d)		
Label the atom below.	3. What is electric curre	
+ + + -		
(a) Draw a diagram of a coal-fire	d power station.	
(b) Describe how it works.		
What is a uranium-235 atom?		
How do nuclear power stations g	enerate heat?	
(a) Draw a diagram of a hydroele	ctric power station.	
(b) Describe how it works.		
(b) Describe how it works.		

8. Describe how wind turbines work.		

9.	Obviously when the	wind isn't blowing,	wind turbines	don't produce	electricity. Ho	ow is this
	problem overcome?					
	•					

10. Describe how solar panels work.

11. Why are wind turbines and solar panels called "intermittent" sources of energy?

12. Fill in the table below.

Source of Electricity	% production in Australia	% production globally
Coal-fired		
Gas-fired		
Nuclear		
Hydroelectric		
Wind		
Solar		

Part E

13. Describe, using examples, why electricity demand varies throughout the

14. Describe two ways that the electricity supply is increased when electricity demand increases.	

15. What are some advantages and disadvantages of different forms of electricity generation?

Part 1	13. What are some advantages and disadvantages of different forms of electricity generation:			
ŭ	Source of Electricity	Advantages	Disadvantage	
	Coal and gas			
	Nuclear			
	Hydroelectric			
	Wind			
	Solar			

16	. A friend tells you that Australia needs to shut down all of our coal- and gas-fired power stations because they produce too much carbon dioxide. How would you respond?

SKILL-BUILDING EXERCISES

The percentage increase in a quantity can be worked out by the following formulas:

percentage increase = $\frac{\text{change in quantity}}{\text{initial quantity}} \times 100\%$ OR percentage increase = $(\frac{\text{final quantity}}{\text{initial quantity}} \times 100\%)$ - 100% Eg. If a value increases from 8 to 14, the percentage increase is % increase = $\frac{\text{change in quantity}}{\text{initial quantity}} \times 100\% = \frac{\text{final quantity}}{\text{initial quantity}} \times 100\% = \frac{14\text{-8}}{8} \times 100\% = \frac{6}{8} \times 100\% = 75\%$ OR % increase = $(\frac{\text{final quantity}}{\text{initial quantity}} \times 100\%)$ - 100% = $(\frac{14}{8} \times 100\%)$ - 100% = 175% - 100% = 75% In other words, 75% of the original value (6 is 75% of 8) has been added to the original value. 17. Using the graph in Part E, determine the power demand for Victoria at 4 am. 18. Using the same graph, determine the power demand for Victoria at 6 pm. 19. Calculate the change in power demand between 4 am and 6 pm. 19. Calculate the percentage increase in power demand from 4 am to 6 pm?

- 21. In other words, power demand increased by _______% from 4 am to 6 pm.
- 22. What was the percentage increase in power demand from 2 pm to 6 pm?