\qquad

1. How does the length of summer days compare to the length of winter days?
\qquad
2. Melbourne's daytime lasts \qquad . On June $21^{\text {st }}$, the daytime lasts for on December $21^{\text {st }}$, and its night time goes for
\qquad
\qquad and the night lasts for \qquad . (These times are similar for all cities with similar latitudes to Melbourne.)
3. Use the table of the sun's position at different times of the year to draw a line graph. Each solid vertical line is the start of the month. Connect the dots with a smooth line. (Technical note: The number of days in each month varies slightly, but the graph shows all the months equally spaced. This is not ideal but is probably okay for our purposes.)

Position of the Sun over the
Earth Throughout the Year

Date	Latitude
January 1	$23^{\circ} \mathrm{S}$
February 1	$17^{\circ} \mathrm{S}$
March 1	$7.5^{\circ} \mathrm{S}$
March 21 (equinox)	0°
April 1	$4.5^{\circ} \mathrm{N}$
May 1	$15^{\circ} \mathrm{N}$
June 1	$22^{\circ} \mathrm{N}$
June 21 (solstice)	$23.4^{\circ} \mathrm{N}$
July 1	$23^{\circ} \mathrm{N}$
August 1	$18^{\circ} \mathrm{N}$
September 1	$8^{\circ} \mathrm{N}$
Sep 23 (equinox)	0°
October 1	$3.5^{\circ} \mathrm{S}$
November 1	$14.5^{\circ} \mathrm{S}$
December 1	$22^{\circ} \mathrm{S}$
Dec 21 (solstice)	$23.4^{\circ} \mathrm{S}$

Position of the Sun (with respect to the Earth)

4. On the day of the September equinox and on the day of the March equinox, the sun is directly over the
\qquad , which has a latitude of \qquad degrees. Daytime and night time are about \qquad hours each.
5. On the day of the December solstice, the sun is directly above the \qquad , which
has a latitude of \qquad ${ }^{\circ}$ S. It is usually the \qquad (longest or shortest) day of the year in the southern hemisphere and the \qquad day of the year in the northern hemisphere. On the day of the June solstice, the sun is directly above the \qquad , which has a latitude of \qquad ${ }^{\circ} \mathrm{N}$.
6. What does the word equinox mean? \qquad
\qquad ron N
\qquad
\qquad
7. What does the word solstice mean? northern hemisphere cities.

9. Go to the Time and Date website (www.timeanddate.com), hover over the Sun and Moon drop-down menu item and then click Sun Calculator. Search for your city or town.
Scroll down and you will see a graphic and a table (an example is shown below). Use the information in the day length column of your city to fill in the rest of the table (below Q10). Each month has its own tab.

March 2020 - Sun in Melbourne												
$<$ Feb	ary	April			Month:		March	\checkmark	Year:	2020	\checkmark	Go
2020	Sunrise/Sunset		Daylength		Astronomical Twilight		Nautical Twilight		Civil Twilight		Solar Noon	
Mar	Sunrise	Sunset	Length	Difference	Start	End	Start	End	Start	End	Time	Mil. km
1	7:04 am $\rightarrow\left(100^{\circ}\right)$	7:59 pm ${\text { (} 260^{\circ} \text {) }}$	12:55:03	-2:25	5:33 am	9:30 pm	6:06 am	$8: 58 \mathrm{pm}$	6:37 am	$8: 26$ pm	$1: 32 \mathrm{pm}\left(59.6^{\circ}\right)$	148.231
2	7:05 am $\rightarrow\left(100^{\circ}\right)$	$7: 58 \mathrm{pm} \leftarrow\left(2619^{\circ}\right)$	12:52:37	-2:26	5:34 am	9:29 pm	6:07 am	8:56 pm	$6: 38$ am	$8: 24$ pm	$1: 32 \mathrm{pm}\left(59.3^{\circ}\right)$	148.267

10. Draw up line graphs for the day length of Melbourne and for the city of your choice. (There will be two lines on the graph.)

	Day Lengths at Different Times of the Year	
Date	Melbourne, AUSTRALIA hh:mm	hh:mm
Jan 1	14:44	
Feb 1	14:01	
Mar 1	12:55	
March Equinox (typically Mar 21)	$\begin{gathered} 12: 08 \\ \text { (doted line on graph) } \end{gathered}$	(dotted line)
April 1	11:41	
May 1	10:33	
Jun 1	9:43	
June Solstice (typically June 21)	$\begin{gathered} 9: 32 \\ \text { (doted dine on graph) } \end{gathered}$	(dotted line)
Jul 1	9:35	
Aug 1	10:11	
Sep 1	11:16	
September Equinox (typically Sep 23)	$\begin{gathered} 12: 08 \\ \text { (dotted line on graph) } \end{gathered}$	(dotted line)
Oct 1	12:27	
Nov 1	13:40	
Dec 1	14:34	
December Solstice (typically Dec 21)	$14: 47$ (dotted line on graph)	(dotted line)

Each solid vertical line represents the start of the month.

Latitude of Melbourne: $38^{\circ} \mathrm{S}$
Latitude of \qquad : \qquad
11. In the Southern Hemisphere, days get shorter and shorter until the \qquad after which they get longer and longer until the \qquad -
12. How does a city's latitude affect the difference in day length throughout the year?
14. Countries near the equator rarely use Daylight Saving Time. Why not?

