1. In a light globe, energy is transformed into energy. 2. In a wood fire, the energy in the wood is transformed mainly into							
2					wood is transforme	ed mainly into	
			energy	•			
3		the table below.			0	TT *4 NT	II24 C11
-	Quan leng	•	netre U	nit Symbol	Quantity	Unit Name	Unit Symbol
-			neue	m	temperature volume		L
-	energ mas			kg	time		S
4			heats up from 20			Joule	
5						Joule	
6						Joule	
			•				
7	. 1000 J	= kJ,	1200 J =	$_{\text{L}}$ kJ, 7.9 kJ = $_{\text{L}}$	J,	0.5 kJ =	J.
8	. If 1 kil	ogram of water	heats up from 50	0°C to 51°C it ha	as absorbed	Joule	es of energy.
9	. If 2 kil	ograms of wate	heats up from 5	60°C to 51°C it h	as absorbed	Jou	les of energy.
1	0. The eq	uation to calcul	ate the amount o	f energy absorbe	ed by water is:		
	Energy	absorbed =					
1		the table below.					
1	Mass of	Initial	Final	Temperatur	e Energy	Absorbed	Energy
	Mass of water	Initial Temperature	Final Temperature	e Change	e Energy	Absorbed (J)	Absorbed
	Mass of water (kg)	Initial Temperature (°C)	Final Temperature (°C)	_	e Energy		25
1	Mass of water (kg)	Initial Temperature (°C) 40	Final Temperature (°C) 60	e Change	e Energy		Absorbed
1	Mass of water (kg)	Initial Temperature (°C) 40 20	Final Temperature (°C) 60 100	e Change	e Energy		Absorbed
1	Mass of water (kg) 1 1 2	Initial Temperature (°C) 40 20 20	Final Temperature (°C) 60	Change (°C)	e Energy		Absorbed
- - -	Mass of water (kg)	Initial Temperature (°C) 40 20	Final Temperature (°C) 60 100	e Change	e Energy		Absorbed
-	Mass of water (kg) 1 1 2 5	Initial Temperature (°C) 40 20 20 15	Final Temperature (°C) 60 100 100	Change (°C)	re Energy	(J)	Absorbed (kJ)
	Mass of water (kg) 1 1 2 5 2. Our bo	Initial Temperature (°C) 40 20 20 15 dies get the ene	Final Temperature (°C) 60 100 100 rgy that they nee	Change (°C) 85	re Energy		Absorbed (kJ)
	Mass of water (kg) 1 1 2 5 2. Our bo	Initial Temperature (°C) 40 20 20 15 dies get the ene	Final Temperature (°C) 60 100 100	Change (°C) 85	re Energy	(J)	Absorbed (kJ)
	Mass of water (kg) 1 1 2 5 2. Our bo 3. Describ	Initial Temperature (°C) 40 20 20 15 dies get the ene	Final Temperature (°C) 60 100 100 rgy that they need intake is.	Change (°C) 85 d from	re Energy		Absorbed (kJ)
1 1	Mass of water (kg) 1 1 2 5 2. Our bo 3. Describ 4. Our bo	Initial Temperature (°C) 40 20 20 15 dies get the energy dies require abordies	Final Temperature (°C) 60 100 100 rgy that they need intake is.	Change (°C) 85 ed from Joules of ene	ergy per second wh	nen we are sitting d	Absorbed (kJ)
1 1	Mass of water (kg) 1 1 2 5 2. Our bo 3. Describ 4. Our bo	Initial Temperature (°C) 40 20 20 15 dies get the energy dies require abordies	Final Temperature (°C) 60 100 100 rgy that they need intake is.	Change (°C) 85 ed from Joules of ene	re Energy	nen we are sitting d	Absorbed (kJ)
1 1	Mass of water (kg) 1 1 2 5 2. Our bo 3. Describ 4. Our bo	Initial Temperature (°C) 40 20 20 15 dies get the energy dies require abordies	Final Temperature (°C) 60 100 100 rgy that they need intake is.	Change (°C) 85 ed from Joules of ene	ergy per second wh	nen we are sitting d	Absorbed (kJ)
1 1	Mass of water (kg) 1 1 2 5 2. Our bo 3. Describ 4. Our bo	Initial Temperature (°C) 40 20 20 15 dies get the energy dies require abordies	Final Temperature (°C) 60 100 100 rgy that they need intake is.	Change (°C) 85 ed from Joules of ene	ergy per second wh	nen we are sitting d	Absorbed (kJ)
1 1	Mass of water (kg) 1 1 2 5 2. Our bo 3. Describ 4. Our bo	Initial Temperature (°C) 40 20 20 15 dies get the energy dies require abordies	Final Temperature (°C) 60 100 100 rgy that they need intake is.	Change (°C) 85 ed from Joules of ene	ergy per second wh	nen we are sitting d	Absorbed (kJ)
1 1 1 1	Mass of water (kg) 1 2 5 2. Our bo 3. Describ 4. Our bo 5. List 3 p	Initial Temperature (°C) 40 20 20 15 dies get the ene be what energy dies require aborocesses within	Final Temperature (°C) 60 100 100 rgy that they need intake is.	Change (°C) 85 ed from Joules of ene	ergy per second wh	nen we are sitting d	Absorbed (kJ)
1 1 1	Mass of water (kg) 1 1 2 5 2. Our bo 3. Describ 4. Our bo 5. List 3 p 6. Fill in	Initial Temperature (°C) 40 20 20 15 dies get the energy dies require abordies	Final Temperature (°C) 60 100 100 rgy that they need intake is.	Change (°C) 85 ed from Joules of ene	ergy per second wh	nen we are sitting d	Absorbed (kJ)

ACTION	Approximate Energy Expenditure				
	Joules/second (J/s)	Joules/minute	kilojoules/minute	kilojoules per hour	
Sitting still	100	6,000	6	360	
Standing still	120				
Walking 3 km/hr	210				
Walking 5 km/hr	300				
Running 9 km/hr	700				
Running 16 km/hr	1300	78,000	78	4680	
Cycling 9 km/hr	300				
Cycling 16 km/hr	500				

	1	Approximatel	₹/ r	now muc	n enerav c	io we tyni	caliv ev	nena i	ner as	1 T /
L /		ADDIOAIIIIaici	v 1	now muc.	n cherzy c	IO WC LVDI	can v c	i Dunau	JCI GE	ιν .

18. How do scientists determine how much energy we use to perform different actions?	

t D	19.	A typical person needs an energy intake of about	per day
Par	20.	Fill in the table below.	

Nutrient	Energy Content		
Nutrient	kilojoules/gram (kJ/g)	kilojoules/kilogram (kJ/kg)	
Carbohydrates			
Fats and Oils			

21. A kilogram of carbohydrates contains enough energy to fuel a typical person for about ______ days.

Food	Amount	Energy Content (total) (kilojoules, kJ)	Energy Content (kJ/100 mL or kJ/100 g)
milk	250 mL	650	
bread (2 slices)	76 grams	740	
egg (boiled or raw)	55 g	610	
avocado (1 whole)	220 g	1300	
3. How is the energy conte	nt in food determine	d? Use a diagram and text.	
		kJ of energy. Walking at 5 km/	•

25	. A 50 g block of	chocolate contains 1125 kJ. How much time will you have to run (at 9 km/hr, which uses up
	about	kJ/min) to burn it off?

art E	26.	What is cellular respiration?
1	27.	Complete the basic chemical equation that describes cellular respiration.

glucose (carbohydrates) + oxygen → _____ + OR fat

28. All of the	produced in cellular respiration and a lot of the
are expelled from the body via	

are expelled from the body via

29. If, over time	ne, our energy intake is greater than our energy expenditure, we	
	ne, our energy intake is less than our energy expenditure, we	

31.	When people lose weight	, where do the atoms that had	I made up the fat molecu	les actually go? (see Q27)	

32. It	f, over time,	our energy	intake is the	same as our ei	nergy expend	liture, we	

	,	,	2,	ω_{J}	1	,	
33.	Explain wh	y people o	often put on extra weight (fat) as	they	get older		
	•			•	C		

		-
34. Explain how people (who are wishing to lose weight) can reduce their	energy intake without eating less food.	