Shedding Light on Lenses: Bonus Feature 2 - The Mathematics of Lenses and Image Formation

 Name: \qquad\[

\]

Magnification, $M=H_{i} / H_{o}$

$$
M=\frac{\mathrm{Hi}}{\mathrm{Ho}}=\frac{\mathrm{v}}{\mathrm{u}}
$$

$\mathrm{H}_{\mathrm{i}}=$ magnification x height of object
$\mathrm{H}_{\mathrm{i}}=\mathrm{M} \times \mathrm{H}_{\mathrm{o}}$

Eg 1. An object is placed 35 cm away from a convex lens of focal length 30 cm . How far is the image from the lens, and what is its magnification?
$\mathrm{f}=30 \mathrm{~cm} \quad \mathrm{u}=35 \mathrm{~cm}$
$\mathrm{v}=\left(\mathrm{f}^{-1}-\mathrm{u}^{-1}\right)^{-1}$
$\mathrm{v}=\left(30^{-1}-35^{-1}\right)^{-1}$

$$
\begin{aligned}
& M=\frac{H i}{H o}=\frac{v}{u} \\
& M=\frac{210}{35}=6
\end{aligned}
$$

$\mathrm{v}=210 \mathrm{~cm}$

Eg 2. Calculate the image height if the object is 10 cm tall.
$M=H_{i} / H_{0}$, so $\mathrm{Hi}=M \times H_{0}=6 \times 10 \mathrm{~cm}=60 \mathrm{~cm}$

1. (a) A 2 cm -tall object stands 4 cm from a convex lens of focal length 3 cm . Determine the position of the image, the magnification produced and its height.
$\mathrm{f}=$ \qquad $\mathrm{u}=$ \qquad $\mathrm{H}_{0}=$ \qquad $\mathrm{v}=? \mathrm{M}=? \mathrm{H}_{\mathrm{i}}=$?
(b) Compare your answers above to your answers to Question 10 from the Shedding Light on Lenses Worksheet.

Quantity	Results from Ray Diagram	Results from Calculations	\% difference ray diagram results - calculation results calculation results
Distance of image to lens (v)			
Magnification			
Height of Image $\left(\mathrm{H}_{\mathrm{i}}\right)$			

2. (a) A 2 cm -tall object stands 6 cm from a convex lens of focal length 3 cm . Determine the position of the image, the magnification produced and its height.
$\mathrm{f}=$ \qquad $\mathrm{u}=$ \qquad $\mathrm{H}_{\mathrm{o}}=$ \qquad $\mathrm{v}=? \mathrm{M}=? \mathrm{H}_{\mathrm{i}}=$?
(b) Compare your answers above to your answers to Question 14 from the Shedding Light on Lenses Worksheet.

| Quantity | Results
 from Ray
 Diagram | Results from
 Calculations | $\%$ difference
 ray diagram results - calculation results$\times 100 \%$ |
| :---: | :---: | :---: | :---: |$|$| calculation results |
| :---: |

3. (a) A 2 cm -tall object stands 9 cm from a convex lens of focal length 3 cm . Determine the height of the image, its position, and the magnification produced.
$\mathrm{f}=$ \qquad $\mathrm{u}=$ \qquad $\mathrm{H}_{\mathrm{o}}=$ \qquad $\mathrm{v}=? \mathrm{M}=? \mathrm{H}_{\mathrm{i}}=$?
(b) Comment on the accuracy of your diagram from Question 15 of the Shedding Light on Lenses Worksheet.
4. (a) A 2 cm -tall object is 2 cm away from a convex lens of focal length 6 cm . Calculate the position of the image, its magnification, and its height.
$\mathrm{f}=$ \qquad $\mathrm{u}=$ \qquad $\mathrm{H}_{\mathrm{o}}=$ \qquad $\mathrm{v}=? \mathrm{M}=? \mathrm{H}_{\mathrm{i}}=$?
(b) Compare your answers above to your answers to Question 6 from the Shedding Light on Lenses Worksheet.
(Use only the actual values and ignore the negatives)

Quantity	Results from Ray Diagram	Results from Calculations	\% difference ray diagram results - calculation results calculation results
Distance of image to lens (v)		(ignore the negatives)	
Magnification			
Height of Image $\left(\mathrm{H}_{\mathrm{i}}\right)$			

5. (a) The same 2 cm tall object is now 3.6 cm away from a convex lens of focal length 6 cm . Determine the position of the image, the magnification produced and its height. $\mathrm{f}=$ \qquad $\mathrm{u}=$ \qquad $\mathrm{H}_{\mathrm{o}}=$ \qquad $\mathrm{v}=? \mathrm{M}=? \mathrm{H}_{\mathrm{i}}=$?
(b) Compare your answers above to your answers to Question 7 from the Shedding Light on Lenses Worksheet. (Use only the values and ignore the negatives)
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Quantity } & \begin{array}{c}\text { Results } \\
\text { from Ray } \\
\text { Diagram }\end{array} & \begin{array}{c}\text { Results from } \\
\text { Calculations }\end{array}
$$ \& \begin{array}{c}\% difference

ray diagram results- calculation results\end{array} \times 100 \%\end{array}\right]\)| calculation results |
| :---: |
| Distance of
 image to lens
 (v) |

6. (a) A 2 cm -tall object stands 6 cm from a concave lens of focal length 3 cm . Determine the height of the image, its position, and the magnification produced.
Remember, mathematically, the focal length of a concave lens is negative, so $f=-3 \mathrm{~cm}$.
$\mathrm{f}=$ \qquad $\mathrm{u}=$ \qquad $\mathrm{H}_{\mathrm{o}}=$ \qquad $\mathrm{v}=? \mathrm{M}=? \mathrm{H}_{\mathrm{i}}=$?
(b) Comment on the accuracy of your diagram from Question 23 of the Shedding Light on Lenses Worksheet.
7. A typical human eye has a diameter of about 2.5 cm . Assuming that the focussed image forms on the retina at the back of the eye (2.5 cm from the lens/cornea), calculate:
(a) the focal length of the lens/cornea when you are focussing on something that is 20 cm away. $\mathrm{u}=20.0 \mathrm{~cm} \quad \mathrm{v}=2.50 \mathrm{~cm} \quad \mathrm{f}=$?
(b) the focal length of the lens/cornea when you are focussing on something that is $1 \mathrm{~m}(100 \mathrm{~cm})$ away. $u=$ \qquad $\mathrm{v}=$ \qquad $\mathrm{f}=$?
(c) the focal length of the lens/cornea when you are focussing on something that is 100 m away.
$\mathrm{u}=$ \qquad metres $=$ \qquad centimetres $\quad \mathrm{v}=$ \qquad $\mathrm{f}=$?
(d) Comment on your findings and, in particular, the way the eye's lens changes shape as you look from a nearby object to a distant object.
\qquad
\qquad
\qquad
\qquad
