1.	hat is acceleration?	

- 2. Write down the formula for acceleration in words and in symbols.
- 3. Calculate the average acceleration of
 - a car that accelerates from 40 km/hr to 100 km/hr in 10 seconds: (i)
 - (ii) of a train that accelerates from zero to 60 km/hr in 30 seconds:
 - (iii) a cyclist who, at the top of a hill, is travelling at 5m/s and 14 seconds later is travelling at the bottom of the hill at 12 m/s:
 - a car which takes 20 seconds to come to a complete stop from 100 km/hr. (iv)
- 4. A train moves away from a station with an acceleration of 2 km/hr/s for 30 seconds. Fill in the table below. (Note: to convert km/hr to m/s you must divide by 3.6)

Time (s)	Speed (km/hr)	Speed (m/s)
0		
1		
2		
3		
10		
30		

- 5. What was the train's acceleration in m/s/s? _____ (The answer is in the table above.)
- 6. If a car has a **deceleration** of 5 m/s/s, we can write that its acceleration, $a = \underline{\hspace{1cm}}$
- 7. A train approaching a station at **60 km/hr** slows down with an acceleration of **-4 km/hr/s**. Fill in the table below.

Time (s)	Speed (km/hr)	Speed (m/s)
0		
1		
2		
3		
10		
15		

8.	The photo on the left shows the position of a falling golf ball at 0.08	
second	intervals. What is happening to the golf ball and how can you tell?	
		_

9.	A ticker tape was pulled to the left by a toy car and a ticker timer left marks like the ones shown. Describe
	the movement of the toy car.

	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• • •	(
																			•
•	 																	 	

10. Т	The acceleration of any fallin	g object that is close to the Earth's surface is	m/s/s which
e	equates to	km/hr/s. (assuming air resistance is negligible)	

- 11. The acceleration of a 5 kg medicine ball is greater than / equal to / less than that of a 700 g basketball. (circle the correct answer and cross out the incorrect answers and assume that air resistance is negligible)
- 12. What effect does air resistance have on a falling object's acceleration?

13. A ball is dropped from a tall building. Fill in the table below.

Time (s)	Speed (m/s)	Speed (km/hr)	Distance Fallen (m)
0			
1			
2			
3			

- 14. Rearrange the formula that expresses the relationship between acceleration (a), change in velocity (Δv) and time (t) (your answer to Q2) so as to make Δv the subject.
- 15. A person steps off a series of platforms into a pool. Fill in the table below.

Height of Platform (m)	Acceleration (m/s/s)	Free-Fall Time	Speed on Impact					
		(s)	Calculation	Result (m/s)				
3	9.8	0.78	9.8 x 0.78	7.6				
5	9.8	1.02						
7.5	9.8	1.24						
10	9.8	1.43						

- 16. An acceleration of 9.8 m/s/s is sometimes referred to as _ 17. A rocket orbiting the Earth accelerates for _ (100) 17. A rocket orbiting the Earth accelerates from 6400 m/s to 7600 m/s in one minute. Calculate its acceleration in m/s/s and in g's.
 - 18. A car travelling at 70 km/hr crashes into another car and comes to a complete stop in 0.5 seconds. Calculate the car's deceleration in m/s/s and in g's. (HINT: watch your units)