

1. What does the acceleration vs force graph tell you about the relationship between acceleration and force (if the mass is kept constant)?

Acceleration vs Mass (for a given force)

2. What does the acceleration vs mass graph tell you about the relationship between acceleration and mass (if the force is kept constant)?

Acceleration Mass

3. Newton's Second Law of Motion can be expressed as an equation:

where F = _____ measured in _____ (N)

m = _____ measured in ____ _ (kg)

 $a = \underline{\qquad}$ measured in m/s/s (or m/s²) and

- 4. Re-arrange the equation in Q3 to make acceleration the subject.
- 5. Re-arrange the equation in Q3 to make mass the subject.
- 6. Calculate the force required to accelerate a 3000 kg truck at a rate of 1.5 m/s/s.
- 7. Calculate the force of gravity acting on a 1 kg ball that is in free fall (and accelerating at 9.8 m/s/s).
- 8. In a race, a 65 kg athlete accelerates from 0 to 8 m/s in 4 seconds. Calculate the force that the athlete generated.
- 9. The F = ma formula is more accurately written as $F_{net} = ma$. What does F_{net} mean?

10. Calculate the net force (F_{net}) acting in the following situations and the acceleration that would be produced.

11. A full supermarket trolley is difficult to accelerate initially, but once you have reached a comfortable speed it becomes easier to push. Why is that?

_									
15. A truck engine is typically much more powerful than a car engine, but trucks typically accelerate at a n lower rate than cars. Why is this?									
16	mad	e of lighty	veight ma	t fitted with brakes, a radiator terials like carbon fibre rather	than steel. How does	-	3		
			C (1 , 1	le to determine the effectiven	ess of slowing down sl	lowly.			
17	7. Fill	in the rest	of the tab	ie to determine the effectiven					
Mas	ss of	Initial	Final	Time Taken to Come	Acceleration	Force Applied on			
Mas Occu						Force Applied on Occupant (F = ma)			
Mas Occu 60	ss of upant	Initial Speed	Final Speed	Time Taken to Come to a Complete Stop 0.012 seconds	Acceleration				

Part E		The force of gravity on every kilogram of mass on (or near) the earth's surface is Newtons. We can write this information in shorthand by saying $g = \underline{\hspace{1cm}}$. Fill in the table below.									
	22.										
		Mass of Object			Force of Gravity Acting on Object (near the Earth's surface)						
			10 kg								
	50 kg										
	1 2	E:11 : 41	250 grams	a1 a.	to the englanction of fall	in a ahia ata wikan tha	-in masiatan as is				
	23.	riii iii tiie			te the acceleration of fall Free Fall (with no air r	<u> </u>	air resistance is zero.				
M	ass	of Fo	rce of Gravity on Object		Net Force on		Acceleration				
	bje		$(\mathbf{F}_{\mathbf{g}}) \ (\mathbf{F}_{\mathbf{g}} = \mathbf{m}\mathbf{g})$		(same as previous column	•	$a = F_{net}/m$				
	1 kg		(- g) (- g g)		-	•	- nev				
	2 kg										
	0 k										
		_	s the table above tell us	abou	it the force of gravity act	ing on a falling object	t and the effect that it				
			object's acceleration?								
			3								
	25.	Fill in the	table below so as to cal	cula	te the acceleration of fall	ing objects when the	air resistance is not				
		zero.									
			Obje	cts i	n Free Fall (with air res	sistance)					
Ma	ass (of Object	Force of Gravity (I	$F_{\mathbf{g}}$	Air Resistance	Net Force, F _{net}	Acceleration				
					(Fair resistance)	(F _g + F _{air resistance}) Don't forget direction!	$a = F_{net}/m$				
1 kg			downwards		2 N upwards						
2 kg			downwards		2 N upwards						
		0 kg	downwar		2 N upwards						
	26.	When air resistance is significant, how does it affect the acceleration of objects that have different masses?									
		XX 71 . 1									
	27.	What does	s terminal velocity mear	1?							
ا		In avaruda	ny languaga tha warda '	'moc	g" and "waight" are used	d interchangeably, but	how do scientists and				
art]					s" and "weight" are used						
Ъ		cligilicers	define weight !				· · · · · · · · · · · · · · · · · · ·				
	 29.	(a) If Apollo 15 astronaut Dave Scott (who performed the hammer and feather experiment on the moon)									
		_			at was his mass on the n	_					
					Newtons and his v						
		Newtons.	<i></i>			C					
			ad stepped onto a set of	bath	room scales (marked in	kilograms) on the mo	on, what would the				
						-					
					n, the men and women and all the equipment are weightless. If an						
			•		ate a 10 kg water hag at :	• •					

applied?