## TOTAL INTERNAL REFLECTION (TIR)

Name: $\qquad$
Aim: to observe what happens to a light beam moving from a substance with a high refractive index (in this case, perspex) towards a substance with a lower refractive index (in this case, air).
Apparatus: Light box, single-ray-forming plate, 12 V power supply, semi-circular Perspex prism.
Method:

1. From the curved side, direct a single ray of light towards the "centre" of the semi-circular perspex prism (at the angles shown in the table below). The angle of incidence in the example

2. Mark in the complete path of the rays by
(a) placing dots on the incident ray, the refracted ray and the reflected ray.
(b) ruling lines to connect the dots after you remove the perspex prism.

- Use a colour code!
- Don't forget that each line will connect each dot to the "centre".


4. By gradually moving the light box from $0^{\circ}$ around towards $90^{\circ}$, determine the incident angle at which the angle of refraction equals $90^{\circ}$. (In other words, find the critical angle.)
$\mathbf{n}_{\text {perspex }}=1.49$
$\mathbf{n}_{\text {air }}=\mathbf{1 . 0 0}$

| Angle of <br> Incidence <br> (in perspex) | Angle of <br> Refraction | Angle of <br> Reflection | Intensity of Refracted Ray | Intensity of Reflected Ray |
| :---: | :---: | :---: | :---: | :---: |
| $20^{\circ}$ |  |  |  |  |
| $40^{\circ}$ |  |  |  |  |
| $60^{\circ}$ |  |  |  |  |

The critical angle for light passing from perspex to air is (follow Step 4 to find it) $\qquad$

1. What happens when the incident angle is greater than the critical angle?
2. Describe what happens as the angle of incidence in the perspex increases from $0^{\circ}$ to $90^{\circ}$.
