TOTAL INTERNAL REFLECTION (TIR)

Name:

Aim: to observe what happens to a light beam moving from a substance with a high refractive index (in this case, perspex) towards a substance with a lower refractive index (in this case, air).

Apparatus: Light box, single-ray-forming plate, 12 V power supply, semi-circular Perspex prism. **Method:**

Angle of Incidence (in perspex)	Angle of Refraction	Angle of Reflection	Intensity of Refracted Ray	Intensity of Reflected Ray
20°				
40°				
60°				
The critical angle for light passing from perspex to air is (follow Step 4 to find it)				

- 1. What happens when the incident angle is greater than the critical angle?
- 2. Describe what happens as the angle of incidence in the perspex increases from 0° to 90° .

