## You vs Usain Bolt: the 100m Sprint.

Name: $\qquad$
Aim: To record information on displacement and time for a sprinter running a 100 m sprint.
Equipment: Stopwatch, trundle wheel, chalk
Method:
Set up 10 -metre intervals on a 100 m running track.
When the starter says "go", the timers start timing and the sprinter run towards the finish.
The timers stop their stopwatches when the sprinter runs past them.


Ideally, 2 students will be placed at each interval and the average time that they measure can then be recorded.
Collect data for at least three sprinters. Your teacher will choose 2 sets of data that have the least errors. (If a bike is available you might like to collect data for a 100 m bike sprint as well.)

| A | B | C | D |
| :---: | :---: | :---: | :---: |
| Displacement <br> $(\mathrm{m})$ | Split Times (s) |  |  |
|  |  |  |  |
|  | Subject 1 | Subject 2 | Usain Bolt |
| 0 | 0 | 0 | 0.00 |
| 10 |  |  | 1.85 |
| 20 |  |  | 2.87 |
| 30 |  |  | 3.78 |
| 40 |  |  | 4.65 |
| 50 |  |  | 5.50 |
| 60 |  |  | 6.32 |
| 70 |  |  | 7.14 |
| 80 |  |  | 7.96 |
| 90 |  |  | 8.79 |
| 100 |  |  | 9.69 |

Q1. Draw Displacement vs Time graphs (Column A vs Columns B, C, and D) for your three subjects and for Usain Bolt) on one set of axes with displacement on the $\mathbf{y}$-axis and time on the $\mathbf{x}$-axis. Draw a "line-of-best-fit".

Q2. How far did each subject run in 1 second?
(i)
(ii)
(iii)
$\qquad$
Q3. How far did each subject run in 2 seconds?
(i)
(ii)
(iii) $\qquad$
Q4. How far did each subject run in 3 seconds?
(i)
(ii)
(iii) $\qquad$
Q5. How much time did it take for each subject to run 35 metres?
(ii)
(ii)
(iii) $\qquad$
(Note: the answers to Qs $6-8$ below are not necessarily the same as the answers to Qs $2-4$ )
Q6. How far did each subject run in the first second?
(i)
(ii)
$\qquad$
Q7. How far did each subject run in the second second? (i)
(ii)
$\qquad$
Q8. How far did each subject run in the third second?
(i)
(ii) $\qquad$
(iii) $\qquad$
(iii) $\qquad$
(iii) $\qquad$
Q9. What do you notice about the distances in questions 6, 7 and 8 ? $\qquad$

Q10. How can you judge a runner's velocity from a Displacement vs Time graph? $\qquad$

Q11. How did the runners' velocities change during their sprints? $\qquad$
$\qquad$

EDACOS
MEDIA

